Differentiation

1. $f(x) = 3x^3 - 4x$. Calculate the value of f'(1).

2.
$$f(x) = (2x - 1)^2$$
. Find $f'(-2)$

3. $y = 4x^2 - 3x + 5$. Calculate the value of $\frac{dy}{dx}$ when x = 2.

4.
$$y = \frac{x^2 - 1}{x}$$
. Find the value of $\frac{dy}{dx}$ when $x = 3$.

- 5. $f(x) = \sqrt{x}(4 + 2\sqrt{x})$. Find f'(4).
- 6. $f(x) = x^3(x-1)$. Find the value of f'(-1).

7.
$$y = \frac{x - 3x^2}{x^3}$$
. Calculate the value of $\frac{dy}{dx}$ when $x = -2$.

8.
$$f(x) = \left(x + \frac{1}{x}\right)^2$$
. Find $f'(\frac{1}{2})$.

9.
$$f(x) = \frac{x^2 - 2x}{\sqrt{x}}$$
. Calculate $f'(16)$.

10.
$$y = \frac{x^3 - 6x}{x\sqrt{x}}$$
. Find the value of $\frac{dy}{dx}$ when $x = 4$

11.
$$f(x) = \frac{\sqrt{x} + x}{x^2}$$
. Find $f'(1)$

- 12. Find the rate of change of $y = 6x 2x^2$ at x = 2.
- 13. Find the rate of change of $y = \frac{1-4x}{x^2}$ at x = -2.
- 14. $f(x) = x(3x 1)^2$. Find the gradient of the tangent to this curve at x = -1.
- 15. $f(x) = \frac{x-3}{x^2\sqrt{x}}$. Find the gradient of the tangent to f(x) at the point where x = 1.
- 16. The distance, d metres, travelled on a fairground ride is calculated using the formula $d(t) = 8t^2 4t$, where t is the time in seconds after the start of the ride. Calculate the speed of the ride after 3 seconds.
- 17. The height, h, of a ball thrown upwards is calculated using the formula $h(t) = 30t 2t^2$, where t is the time in seconds after the ball is thrown. Calculate the rate of change in the height of the ball after (a) 5 seconds (b) 7.5 seconds. Explain your answer.

Differentiation – 2

- 1. Differentiate (a) $y = 3x^4 - 4x^2 + 2x$ (b) $f(x) = x^2(2x^3 - x)$ (c) f(x) = 3(4x - 1)(x + 2)(d) $y = \sqrt{x}(x - 4)$ (e) $f(x) = \frac{x^3 + 3x - 1}{x^2}$ (f) $\frac{3x^3 + x}{\sqrt{x}}$
- 2. $y = x^2(x \sqrt{x})$. Find f'(4).
- 3. Given $f(x) = \frac{2x}{\sqrt[3]{x}} + x^3$, find f'(8).
- 4. Given $y = 3x \frac{1}{x^2}$. Find the rate of change when x = 2.
- 5. The distance a rocket travels is calculated using the formula $d(t) = 4t^3$, where t is the time in seconds after lift-off. Calculate the speed of the rocket after 8 seconds.
- 6. Find the equation of the tangent to the curve $y = 3x^3 4x + 1$ at the point (1,0).
- 7. Find the equation of the tangent to the curve $y = \frac{4\sqrt{x}}{x} + 2x$ at the point where x = 4
- 8. A curve has equation $y = 3x^2 9x + 1$. A tangent to this curve has gradient 3. Find the equation of this tangent.
- 9. A curve has equation $y = x^2 + 5x + 7$. A tangent to this curve meets the positive direction of the x-axis at 45°. Find the equation of this tangent.
- 10. A curve has equation $y = \frac{x^4}{4} 32x$. A tangent to this curve is parallel to the x-axis. Find the equation of this tangent.
- 11. Show that the curve $y = x^3 6x^2 + 12x 5$ is never decreasing.
- 12. Show that the curve $y = 12x^2 6x 8x^3$ is never increasing.
- 13. Show that the curve $y = x^3 x^2 + x$ is always increasing.
- 14. Find the intervals in which $y = x^3 6x^2 + 5$ is increasing.
- 15. Find the stationary points of the curve $y = x^3 12x + 3$ and determine their nature.

- 16. A curve has equation $f(x) = x^3 + 4x^2 3x 18$.
 - (a) Show that (x + 3) is a factor of f(x).
 - (b) Find the points where f(x) cuts the x and y axes.
 - (c) Find the stationary points of f(x) and determine their nature.
 - (d) Make a sketch of f(x).
- 17. A curve has equation $f(x) = 8x^3 3x^2$
 - (a) Find the stationary points of f(x) and determine their nature.
 - (b) Find the maximum and minimum values of f(x) in the interval $-2 \le x \le 1$.
- 18. A square piece of card of side 20 cm has a square of side x cm cut from each corner.

An open box is formed by turning up the sides.

- (a) Show that the volume of the box can be written as $V = 400x 80x^2 + 4x^3$
- (b) Find the maximum volume of the box.

19. For each function f(x) below, sketch f'(x).

Differentiation – 3

- 1. Find the derivative of
 - (a) $y = x^{2} + 3\sqrt{x}$ (b) $f(x) = \frac{x^{2} - 4}{\sqrt{x}}$ (c) $y = \frac{(x - 2)(x + 1)}{\sqrt{x}}$ (d) $y = (4x - 2)^{3}$ (e) $y = \sqrt{6x - 4}$ (f) $f(x) = \sin 4x$ (g) $y = 2\cos^{2} x$ (h) $y = \sin^{3} x$
- 2. The height of a ball projected upwards is calculated using the formula $h(t) = 30t t^2$, where t is the time in seconds after being projected.
 - (a) Find the height of the ball after 10 seconds.
 - (b) Find the speed of the ball after 12 seconds.
- 3. Find the equation of the tangent to the curve $y = x^3 x^2 1$ at the point (2,3).
- 4. Find the equation of the tangent to the curve $y = 6\sqrt{x} \frac{2}{x^2}$ at the point where x = 1.

5. Find the equation of the tangent to the curve $y = \sin^2 x$ at the point where $x = \frac{\pi}{6}$.

- 6. A curve has equation $y = (3x 2)^4$. A tangent to this curve has gradient 12.
 - (a) Find the point of contact of the tangent and the curve.
 - (b) Find the equation of this tangent.
- 7. A tangent to the curve $y = \frac{4}{x^2}$ is parallel to the line y = x. Find the equation of this tangent.
- 8. Show that the function $f(x) = 6x^2 x^3 12x$ is never increasing.
- 9. Show that $y = x^3 + 4x + 1$ is always increasing.
- 10. Find the values of x for which $y = x^3 + 6x^2 36x$ is increasing.
- 11. Find the values of x for which $y = x^3 + 3x^2 9x + 1$ is decreasing.

- 14. A curve has equation $y = x^3 3x^{2}$.
 - (a) Find where this curve cuts the x and y axes.
 - (b) Find the stationary points of the curve and determine their nature.
 - (c) Sketch the curve.
- 15. Find the minimum and maximum values of $y = 8x^3 3x^2$ in the interval $-2 \le x \le 1$.
- 16. Show that the curve $f(x) = x^3 4x^2 + 7x$ has no stationary points.
- 17. Show that the curve $y = \frac{1}{2}x^4 + x^2 20x + 15$ has a single stationary point at the point (2, -13).
- 18. In each example below sketch the graph of y = f'(x).

19. Find the coordinates of the points where the curves $y = x^3 + 2x^2 - 8x$ and $y = x^3 + x^2 + 2x$ have the same gradient.

20.
$$y = x^2 - 4x$$
. Show that $\left(\frac{dy}{dx}\right)^2 - 4y - 16 = 0$.

21. The diagram shows the end view of an aircraft hangar. The sloping sides and roof of the hangar are reinforced with metal beams.

The roof beam is of length y metres and there are 2 beams of length x metres at each sloping side.

- (a) Show that $y = 40 2(x^2 81)^{\frac{1}{2}}$
- (b) The length of metal needed for the supporting beams is L = 4x + y. Find the value of x which minimises this length.
- 22. A wind shelter, as shown opposite, has a back, top and two square sides. The total amount of canvas used in the shelter is 96 m^2 and the length of each square side is x metres.
 - (a) If the volume of the shelter is V cm³, show that $V = x(48 - x^2)$.
 - (b) Find the dimensions of the shelter which give a maximum volume.

Drawing f'(x)

In each question below y = f(x) is drawn. Sketch f'(x) in each case.

Differentiation Products and Quotients

1.
$$y = (2x - 1)(3x + 2)$$
. Calculate $\frac{dy}{dx}$ when $x = 2$.

2.
$$f(x) = \frac{x^3 - 2x^2}{x}$$
. Calculate $f'(-3)$.

3.
$$f(x) = \left(2x - \frac{4}{x}\right)^2$$
. Calculate the value of $f'(-2)$.

4.
$$y = \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2$$
. Calculate $\frac{dy}{dx}$ when $x = 3$.

5.
$$f(x) = \frac{x^3 - 1}{\sqrt{x}}$$
. Calculate the value of $f'(4)$.

6.
$$y = \frac{2x - x^2}{\sqrt[3]{x}}$$
. Calculate $\frac{dy}{dx}$ when $x = 8$.

7.
$$f(x) = \frac{4}{x^2} + x\sqrt{x}$$
. Find the value of $f'(4)$.

8.
$$f(x) = x^4 - \frac{16}{\sqrt{x}}$$
. Calculate $f'(1)$.

9.
$$y = \frac{\sqrt{x} - x}{x^2}$$
. Calculate the value of $\frac{dy}{dx}$ when $x = 4$.

10.
$$f(x) = \frac{(x^2 + 1)^2}{\sqrt{x}}$$
. Find $f'(1)$.

11.
$$f(x) = \frac{x^3 - 4x}{x^2 \sqrt{x}}$$
. Find the value of $f'(4)$

12.
$$y = \frac{x^2 - x}{\sqrt[4]{x^3}}$$
. Find $\frac{dy}{dx}$ when $x = 16$.

Maxima and Minima

- 1. A solid cuboid measures x units by x units by h units. The volume of this cuboid is 125 units³.
 - (a) Show that $h = \frac{125}{x^2}$

(b) Show that the surface area of this cuboid is given by $A(x) = 2x^{2} + \frac{500}{x}.$

- (c) Find the value of x such that the surface area is minimised.
- 2. An open cuboid (i.e no top) has measurements x units by x units by h units. Its volume is 288 units³.
 - (a) Show that the surface area of this cuboid is $A(x) = 2x^2 + \frac{864}{x}$.
 - (b) Find the dimensions of this cuboid if the surface area is to be minimised.
- 3. An open trough is in the shape of a triangular prism, as shown. The trough has a capacity of 256 000 cm³.
 - (a) Show that the surface area of the trough is $A(x) = x^{2} + \frac{1024\,000}{x}$
 - (b) Find the value of x such that this surface area is as small as possible.
- 4. The diagram shows a solid cuboid. The surface area of this cuboid is 600 cm^2 .

(a) Show that
$$d = \frac{100}{x} - \frac{2x}{3}$$

(b) Show that the volume of the cuboid is given by $V = 200x - \frac{4}{3}x^3$

$$v = 200x - \frac{1}{3}x$$

(c) Find the value of x which maximises this volume.

- 5. An open trough, as shown, has surface area 4 m^2 .
 - (a) Show that $h = \frac{2}{x} \frac{x}{2}$.
 - (b) Show that the volume of the trough is

$$V = x - \frac{x^3}{4}$$

(c) Show that for a maximum volume x =

- 6. An open open cuboid is shown opposite. The surface area of this cuboid is 12 units².
 - (a) Show that the volume, V units³, of the cuboid is given by $V(x) = \frac{2}{3}x(6-x^2)$
 - (b) Find the exact value of x which gives a maximum volume.

 $\frac{2}{\sqrt{3}}$

- 7. A wind shelter, as shown, has a back, top and two square sides.
 The total amount of canvas used to make the shelter is 96 m².
 - (a) Show that the volume of the shelter is $V = x(48 x^2)$
 - (b) Find the dimensions of the shelter of maximum volume, justifying your answer.
- A flag consists of red triangle on a yellow rectangular background. In the yellow rectangle ABCD, AB = 12 and AD = 8. EB = CF = x.
 - (a) Show that the area H, of the red triangle is Given by $H(x) = 48 - 6x + \frac{1}{2}x^2$
 - (b) Find the biggest possible area of the triangle.

2x

h

Х

9. A rectangular garden is laid out as shown in the diagram with a rectangular lawn of area 50 square metres surrounded by a border. The lawn has breadth x metres.

- (a) If the total area of the garden is A square metres, show that $A = 58 + 4x + \frac{100}{x}.$
- (b) Find the value of x which minimises the area of the garden.
- 10. When a ship is travelling at a speed of v kilometres per hour it uses fuel at a rate of $(1 + 0.0005v^3)$ tonnes per hour.
 - (a) Prove that the total amount of fuel used on a voyage of 5000 km at a speed of v kilometres per hour is $A = \frac{5000}{v} + 2.5v^2$ tonnes.
 - (b) Find the speed which minimises the amount of fuel used and the amount of fuel used at this speed.
 - 11. A square piece of card of side 50 cm has a square of side x cm cut from each corner. An open box is formed by turning up the sides.
 - (a) Show that the volume, V, of the open box is given by $V = 2500x 200x^2 + 4x^3$.
 - (b) Find the maximum volume of the box, justifying your answer.
 - 12. A window is in the shape of a rectangle surmounted by a semi-circle. The glass in the semi-circular part is stained glass which lets in one unit of light per m² and the glass in the rectangular part is clear which lets in 2 units of light per m².
 - (a) If the perimeter of the window is 10 metres, show that $h = \frac{10 - 2x - \pi x}{2}$.
 - (b) Hence show that the amount of light, L, let in by the window is $L = 20x 4x^2 \frac{3}{2}\pi x^2$.
 - (c) Find the value of x such that the design of the window lets in the maximum amount of light.

2x metres